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Starting with the integral form of the correction factor derived in the previous paper [Holmes & Bar- 
rington-Leigh (1974). Acta Cryst. A30, 635-638], the explicit form of the function describing intensity 
in reciprocal space for slightly disoriented non-crystalline fibres is described, and simplifying approxima- 
tions are made. Correction factors for real data are calculated, and the validity of the theory tested with 
data from tobacco mosaic virus gels. A correction factor is also given for crystalline fibres. 

1. Introduction 

In the previous paper, Holmes & Barrington Leigh 
(1974) have derived an integral allowing the intensity 
observed in diffraction from slightly disoriented fibres 
to be evaluated. However, work with tobacco mosaic 
virus (TMV) gels by Mandelkow (1973) has shown that 
a simple empirical function appears to describe the 
intensity, namely A + BR, where A and B are constants, 
and R is the distance from the meridian on the fibre 
diagram. 

The present paper has two aims: to describe the 
form of Holmes & Barrington Leigh's function in a 
number of experimental situations, and to consider 
approximations which permit the derivation of simple 
correction factors to be applied to real data. These 
are, for slit cameras, 

2pa/erf ( l/2a/o~oR) 
for point-focus cameras with significant X-ray beam 
size, 

(1 + 27~p2a 2 + 27~p20~R2) 1/2, 

and for point-focus cameras with insignificant beam 
size 

(1 + 2z~p2cc~R2) 1/2 

(for explanation of symbols, see Table 1). 
The second of these is quite similar to Mandelkow's 

empirical correction factor. 

2. Evaluation of an explicit form of the intensity function 

The intensity in reciprocal space is given by Holmes 
& Barrington Leigh as 

I= vc~---~ol l;=of(l)exp- [(s-R)Z+(Z-l)Z]2(Xo 2v2 io ( D2]SR dl. 

(1) 

These symbols and others used in this paper are ex- 
plained in Table 1. 

Symbol 
I 
Icalc 
lobs 
60 
/3 

R 
s 

Z 

I 
Zo 
f(1) 

Table 1. Symbols used in this paper 
Meaning 

Intensity under ideal measurement conditions 
Intensity in the absence of disorientation 
Intensity measured experimentally 
Disorientation parameter 
Distance from origin in reciprocal space 
Distance from meridian on fibre diagram 
Distance from meridian in transform of one particle 
Distance from equator on fibre diagram 
Distance from equator in transform of one particle 
Value of Z at centre of layer line 
Distribution of intensity across a layer line in ab- 
sence of disorientation 
Length of coherently diffracting crystallite p2n~2R2 
Half-width  of  X-ray beam 
io(x)= Io(x)e -x 

Equation (1) is almost identical to equation (9) in 
the preceding paper, lacking only a factor Icalc(S) 
in the integrand. As Ica~c(s) usually varies slowly, it 
has been omitted from calculations in this paper, ex- 
cept where its explicit form becomes important. 

In this section, the form of 1is described. To do this, 
a specific form of the function f(l)  is required. The 
usual case is a layer-line scattering function, being the 
squared Fourier transform of a sequence of points, 
of length p, separation Ap. This is 

sin 2 (pln)/sin 2 (Apln) . 

Near the centre (Z0) of a layer line, this is approximated 
well by the Gaussian form 

(p2/Ap2) exp -p2rc(l- Z0) 2. 

For the following computations we have taken the form 

f(/) = exp -p2rc(l-Zo)2; (2) 

for the TMV particle, p = 3 0 0 0 A  (Hall, 1958; Wil- 
liams & Steere, 1951). 

The function I has been computed from equations (1) 
and (2) in the form of cross-sections in Z at fixed 
values of R. These are illustrated, in Fig. 1 for dis- 
orientation of ~0 = 2 o, at Z0 = 0.087 A -~ (the sixth layer 

A C 30A - 3 
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line of TMV). (a0/) -~ as a function of R, at Z=Z0 ,  is 
illustrated in Fig. 2. The approximation that I is in- 
versely proportional to R, referred to in the previous 
paper, is seen to be substantially improved as a0 in- 
creases, and slightly improved as Z0 decreases. 

Fig. 3 gives the cross section in Z on the meridian 
for several interesting cases. Fig. 3(a) illustrates the 
cross-section for the limiting case of an infinitely long 
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Fig. 1. Cross sections in Z of the intensity function, on a layer 
line with Z0 = 0.087/~- 1. Units of intensity are arbitrary, but 
used consistently in Figs. 1-6. Solid lines - computed from 
equations (1) and (2). Broken lines- using approximation 
io(Rs/o~oZV2)=O~oV/V2-nR. No cross section is given on the 
meridian for this approximation, as the errors become in- 
finite. Dotted lines - calculated from equation (6). 
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Fig. 2. (e0I)-x at the centre of  a layer line, as a funct ion  of  R. 
I is calculated f rom equat ions  (1) and (2). Solid line - eo = 
1 °, layer line 6 for  T M V ;  broken  line - 0c0=2 °, layer line 6; 
do t t ed  line - ~0 = 2 °, layer line 3. 

molecule [f(1) is then a delta-function]. Fig. 3(b) and 
(c) are typical TMV cases, and Fig. 3(d) is the 1.5 
reflexion of paramyosin. Asymmetry increases with in- 
creasing ~0, diffraction angle and coherent molecular 
length. 

Fig. 3(d), corresponding to the 1-5/~ reflexion of 
paramyosin, shows that disorientation is insufficient 
to account for the discrepancy in the position of this 
reflexion, compared with that expected from a coiled- 
coil structure (Cohen & Holmes, 1963). This discre- 
pancy is about 0.015 A (Elliot, 1968). Elliot describes 
the reflexion as asymmetric, which probably illustrates 
the failure of the approximation that I¢ai¢(s) is con- 
stant. 

3. Approximation to simplify the basic expression 

(a) The asymptotic form io(x) ~ (2nx) - i n  as x ~ co 
[Abramowitz & Stegun (1965), p. 377] may be used in 
equation (1) for all values of R except those very near 
the meridian. 

(b) The further approximation R = s  should also be 
used in part of equation (1), so that the total approxi- 
mation becomes 

io( R s  / = O ov / R . (3) 
This approximation is necessary when approximation 
(a) is used. This is because, for very small s, the ap- 
proximation 

io ( Rs / o~v 2) = O~ov l g ~  Rs 

[approximation (a)] is not very good. Equation (3) is 
considerably better. 

The errors caused by these two approximations are 
shown in Fig. 4. Although these errors are sometimes 
very serious, they are reduced by two further approxi- 
mations, which at the same time simplify the expression 
for I considerably. 



(c) It can be seen from Fig. 3 of the preceding paper ~- 
that for small 7-a, 

( s - n ) z + ( Z - l )  2 ( Z - l )  z 

v2 _ Rz . (4) 

q 
N 
I o, o01- 

O-- (d) It is assumed that the integrand in equation (1) 
is insignificant outside the limits of integration. This 
is quite reasonable except when R is very small. How- 
ever, in this case it has the following further advantage: 
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Fig. 3. Cross sections in Z of the intensity function, on the 
meridian, about the centre of a layer line: 

Z0(A -1) ~0 p(A) Natural  system 
(a) 0.348 2 ° oo 
(b) 0.087 2 ° 3000 TMV, ,LL6 
(c) 0"174 2 ° 3000 TMV, LL12 
(d) 0"667 2 ° 100 Paramyosin, 1.5/~, 
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Fig. 4. Contour  diagram of errors introduced into the intensity 
function by the approximation io(Rs/o~v 2) = ~.ov/Vf~R. Zero 
contour dotted; first five positive contours solid; first five 
negative contours broken;  contour interval=0.025, in the 
arbitrary units used in Fig. 1. Z0=0,087 A -1, ~0=2 °. The 
deepest trough and the point where the ridge crosses 
R=0.001 /~-1 are marked. 

The expression for I given in equation (1) is in- 
variant with respect to R and Z0 when integrated in Z. 
This is important when 1 is convoluted in Z with 
X-ray beam profiles (see below, § 4), because it causes 
errors in the cross section of I partly to cancel each 
other. The previous three approximations destroy the 
invariance but it is restored by this one. 

We apply these four approximations and perform 
the integration. Let 

Then 
P =  p2rco~R2. (5) 

1 e x p -  [ pzn ( Z - Z 0 )  z] 
1 -  ]/1 + 2P [ 1 + 2P . (6) 

This is the main equation for diffracted intensity, from 
which the correction factors will be derived.* 

The error introduced by using equation (6) instead 
of equation (1) is shown in Fig. 5 for TMV layer line 
6, C~o = 2 o. Comparing Fig. 4 and Fig. 5 it is clear that 
the last two approximations have substantially count- 
eracted the error caused by the first two. Although the 
errors are still serious below about R=0.005 A -1, they 

* Equation (6) is very similar to equation (17) in the pre- 
ceding paper. The assumption of a delta-function layer line is 
just equivalent to the assumption p>>l and since the coeffi- 
cient of R 2 is about 104 for TMV (and for many other cases 
because shorter coherent lengths often occur with large values 
of ~o), the delta function is a good approximation to equa- 
tion (2) for R>0.01 .  For this domain, the intensity is pro- 
portional to R - t  along the middle of the layer line. Fig. 6 
compares 1-1 as computed from equations (1) and (2)wi th  
V2~p~oR and 1/1 + 2 P  for layer line 6, ~0=2 °. The approxi- 
mation of 1-1 by ]/~po~oR has already been discussed with 
reference to Fig. 2. The approximation by ]/1 + 2 P  is sub- 
stantially improved at lower values of ao (at a 0 = l  °, for this 
layer line, the error is nowhere greater than 4 %) or at lower 
layer-line numbers (layer line 3, 0c0 = 2 °, has a maximum error 
of 10 %, compared with about 25 % for layer line 6). 

A C 30A - 3* 
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are now very close to being antisymmetric about the 
centre of the layer line. This antisymmetry will reduce 
the errors considerably when I is convoluted in Z 
(see below). 

The errors are illustrated in another form in Fig. 6, 
where cross sections of the functions whose errors 
are illustrated in Figs. 4 and 5 are shown together with 
the correct function. The partially approximated func- 
tion is not shown on the meridian, where the errors 
become infinite. 

4. The experimental c o r r e c t i o n  f a c t o r s  

In practice I is not observed. The intensity I is convo- 
luted with the X-ray beam cross section and the reading 
head of the densitometer. The latter had been found 
negligible in experiments varying the head size, and 
will not be considered further. In any case it can be 
thought of as a modification to the beam shape. 

In the direction of R convolution has little effect 
except for a slight loss in resolution of Ica~c(S), since 
I does not change rapidly in this direction. We con- 
sider therefore only the effect of convolution in Z. 

Note that the cumulative approximations illustrated 
in Fig. 5 have a considerably reduced effect after con- 
volution, because the errors introduced are nearly anti- 
symmetric, and the beam cross section is nearly sym- 
metric, so the errors largely cancel each other. At very 
low R, a beam of sufficient size will effectively in- 
tegrate I in Z, and there will be no residual error. 
This is the situation in most TMV experiments. 

We consider two shapes, corresponding to the two 
types of beam used in TMV work (Barrett, Barrington 
Leigh, Holmes, Leberman, Mandelkow, yon Seng- 
busch & Klug, 1971). 

(a) X-ray beam with rectangular profile 
This corresponds to the single monochromator (slit) 

camera. The observed intensity at the centre of the 
layer line 

1 I zo+a = IdZ (7) 
/ob~ - ~ a  . ,Zo-, ,  " 

We refer to the distance 2a as 'effective slit size'. 
It depends upon the size of the X-ray beam and the 
geometry of the camera, being in fact the size of the 
image of the beam in the fibre diagram, typically 
about 0.01 A -I  for a 14 cm specimen-film distance. 

We substitute (6) in (7). The correction factor for 
the observed intensity/robs is then seen to be 

2pVzm 
K= 2pa/erf ~/~ + 2P 

(see Abramowitz & Stegun, p. 298). 
I f P > ~  1, 

(8) 

K= 2pa/erf l/2a 
c~oR " 

(9) 

Equations (8) and (9) give the correction factors re- 
quired for slit data. Since erf (x) is almost constant for 
x > 2, correction is rarely required. This result is 
essentially that derived by Holmes (1959) for the zero 
layer line of TMV. It is valid for all layer lines. 

(b) X-ray beam with Gaussian profile 
This is a reasonable approximation to most point- 

focused beams, such as that produced by the double 
monochromator used by Barrett et al. (1971). 

The beam intensity is 

1 
/beam-- a. _~=__F 2zc exp (-Z2/2a2). (10) 

Convolution of (10) and (6) gives 

1 
o b s  " -  

a]/~ + 2 P  

I2exp- )] dz 
1 + 2 P  " 

to , _ _ 1  - .  

u ......................... -0.07 

0 0.00! 0.01 0.02 

'~ R( , ,~- )  

Fig. 5. Contour diagram of the errors introduced into the in- 
tensity function in equation (6). Non-meridional extremes 
are marked. Parameters are the same as in Fig. 4. 
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Fig. 6. Comparison of two approximate forms with the correct 
intensity function, on the centre of TMV layer line 6, for 
~0=2 °. Solid line - the reciprocal intensity function; long 
dashes - I/I + 2 P ;  short dashes - },/2-~p~oR. 



Evaluation of the integral leads to the required cor- 
rection factor: 

where 

and 

o)o 

K = ( A  + BR2) t/z (11) 

A = 1 + 2rcp2a 2 

B = 2nc~p z. 

This is the correction factor for point-focused data. 
The delta function approximation to f(l)  used by 

Holmes & Barrington Leigh is equivalent to omit- 
ting the 1 from A, and is usually valid over the whole 
domain of R, in contrast to equation (6). It is evident 
that R dependence is preserved for large R in both (9) 
and (11). 

5. Experimental tests 

Two sets of experimental data from TMV were made 
available by Dr E. Mandelkow, one from a point- 
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Fig. 7. The third layer line of the transform of TMV (a) and 
the ratios of simulated to observed intensities (b). 
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Fig. 8. The sixth layer line of the transform of TMV (a), and 
the ratios of simulated to observed intensities (b). 

focus camera and one from a slit camera. In each 
case, data was obtained by scanning along the centre 
of layer lines and corrected for all factors except dis- 
orientation in the manner described by Barrington 
Leigh (1970). 

The correction factor for slit data was given in equa- 
tion (8). Erf (x) is effectively (within 1%) constant for 
x > 2, so over the domain used (R<0.1) the slit data 
would not require correction. Error is introduced at 
low values of R, because the approximation that Ieale 
is constant is not sufficiently accurate for evaluating 
the integral in equation (7). However, it was assumed 
that for the larger part of the layer lines examined, 
slit data contained no systematic deviations from the 
square of the transform. Such deviations would be 
caused by large and rapid fluctuations in Icalc. These 
occur in the TMV data, but only for R < 0.03. 

Subject to disorientation correction, point-focus data 
should be accurate on a much larger part of the layer 
line. However, it is difficult to estimate accurately the 
quantities a and c~0 needed for such a correction. The 
procedure adopted, therefore, was to compare point- 
focus with slit data, and determine the values of 
~0/1/~/-~+-p.2a 2 and a scale factor by least-squares fit- 
ting of equation (11) for 0.03 < R  < 0.10. 

The whole of the layer line was then corrected by 
applying equation (l l) to the point-focus data. The 
effect of disorientation was calculated by applying 
equation (7) numerically, but including Iealc(S), to 
simulate slit data. This was then compared with the 
observed slit data. 

6. Experimental results 

Two layer lines, the third and sixth, were used. (These 
are the only layer lines which provide near-meridional 
data.) Table 2 gives the least-squares parameters and 
standard deviations obtained from equation (11). 
These are consistent with values of 1 ° for c~0 and 
~ 100/tm for the X-ray beam focal width which are 
in reasonable agreement with expected values. High 
accuracy is not available by this method, since only 
the points nearest the meridian have very much in- 
fluence on the quantity a. 

Table 2. Least-squares parameters and standard devia- 
tions obtained by fitting T M V  data to the equation Iobs= 

(A + BR z) - 1/z 

Layer line A B S.D. in lobs 
3 0-39 260 0.32 
6 0.54 245 0.61 

Figs. 7(b) and 8(b) show the ratios of simulated 
slit intensities to observed intensities, as a function of 
R. They are shown as continuous data to facilitate 
comparison with Figs. 7(a) and 8(a) which show the 
corrected point-focus measured intensities (the best 
representation of the square of the transform available). 
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It is clear that the only systematic error is a tendency 
for the ratios to follow the measured intensities, par- 
ticularly on the third layer line at low R. This is 
attributed to the fact that even point-focus data is some- 
what averaged by the X-ray spot. 

When allowance is made for this source of error, 
it is clear that Figs. 7(b) and 8(b) confirm the validity 
of equation (11) under the conditions studied. 

In the special case when p = q ,  equation (6) shows on 
the centre of the layer line a dependence upon v -1 
instead of R- i .  This is the dependence found by Fran- 
klin & Gosling (1953), since p = q  implies that all 
disorientation arcs are of constant width in the di- 
rection of v, an assumption inherent in their treatment. 
However, for most crystalline fibres, p>>q, and the 
correction for non-crystalline fibres applies. 

7. Previously derived correction factors 

Several authors have derived correction factors for 
disorientation of fibres. Probably the best known is 
that of Franklin & Gosling (1953). Their correction 
factor is shown below (§ 8) to be a special case of a 
more general form of equation (6). 

Rather than correct a point measurement of inten- 
sity, some authors, for example Langridge, Wilson, 
Hooper, Wilkins & Hamilton (1960), have made meas- 
urements by integrating arcs, either radially or cir- 
cumferentially. It is a simple procedure to show that 
the correction factors are then approximately v and 
1/v respectively. The radial integration correction fac- 
tor is the same as that given by Franklin & Gosling, 
but in this case is reasonably accurate for a wide range 
of situations. 

Fraser, MacRae, Parry & Suzuki (1971) derived a 
correction factor from similar premises to Holmes & 
Barrington Leigh, but using a square-wave function 
for layer-line cross section and particle distribution. 
Their correction factor has the same dependence upon 
(po~oR) -1 at high values of R, as may be shown by 
applying the approximation 

cos rio = 1 - &02/2 

to their final equations (f0 is roughly equivalent to 
our e0). However, part of their derivation assumed 
thin layer lines, and because of this, their expression 
breaks down near the meridian. 

8. Modifications required for crystalline fibres 

Subject to the approximation limits described above, 
the corrections given are generally applicable to in- 
tensities from non-crystalline disoriented fibres. When 
crystallinity is present, the approximation that/care(s) 
varies slowly may no longer be valid. In this case, 
Io,~o (s) must be included in the integral in equation (1), 
and equation (6) rederived. For a crystalline fibre we 
may consider Icalc(s) Gaussian, and write 

/ca,c(S) = exp -q2~z(s-Ro) z 

where q is the thickness of a crystallite. By applying 
the approximations from § 3, we again reach equation 
(6), but this time P [see equation (5)] has a different 
form, namely 

p = [ ( p _ q ) 2  + q2v/R~lne~R2" 

9. Conclusion 

The main result derived in this paper is equation (11), 
which gives the correction factor for disorientation to 
be applied to data collected using a point-focused beam. 
If the beam size is substantially larger than the na- 
tural layer-line thickness (in practice by more than a 
factor of two or three), this factor is accurate over the 
whole fibre diagram. 

In the other extreme case, of a vanishingly small 
X-ray beam or a very thick layer line, equation (11) 
reduces to equation (6). The validity of this correction 
factor depends upon R and ~0, and to a lesser degree 
upon Z. Fig. 9 summarizes the regions of the fibre 
diagram in which equation (6) gives the correction 
factor to within 1% and 5 %, for ~0 = 1 o, 2 ° and 5 o 

For cases between these two extremes equation (11) 
may be used, with accuracy judged from the extreme 
cases. Near the meridian, unless the X-ray beam is 
large, the full form [equation (1)] must be used. 
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(b) 
Fig. 9. The validity of equation (6) as an approximation for the 

intensity function, for various degrees of disorientation. 
Each diagram represents the fibre diagram. For a given dis- 
orientation, the equation is correct in all regions to the right 
of the line marked with that disorientation, to within 5 % (a) 
or 1% (b). 
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Morphologie et Propri6t6s Optiques des Cristaux de Lysozyme de Poule 
de Type Quadratique et Orthorhombique 

PAR BERNARD CERVELLE, FABIEN CESBRON ET JEAN BERTHOU 
Laboratoire de Min&alogie-Cristallographie, associ~ au CNRS, 

Universit~ de Paris VI, Tour 16, 4 place Jussieu, 75230 Paris C~dex 05, France 

ET PIERRE JOLL~S 
Laboratoire de Biochimie, UniversitO de Paris VI, 96 boulevard Raspail, 75272 Paris C~dex 06, France 

(Refu le 12 mars 1974, acceptd le 10 avril 1974) 

Large crystals of hen egg-white (HEW) lysozyme, both tetragonal and orthorhombic, have been studied 
with a goniometer and optical methods. As the crystals are particularly stable, some of their optical 
properties have been measured, mainly the refractive indices determined from reflectance measure- 
ments under a photometric microscope. Orthorhombic HEW lysozyme: crystals show the faces (010), 
(011) and (110). Refractive indices nt0011=no = 1-562 to 1.547 (2=480-640 nm); ntlo01=nm=l'560 to 
1.544; ntolo I =np= 1.550 to 1.532. Maximum birefringence 0.013 ().= 589 nm). Optic axial angle 2 V=48 
to 51 °. Tetragonal HEW lysozyme: crystals formed by the association of a tetragonal {110} prism and a 
{101} tetragonal bipyramid. Refractive indices nt00t~=ne and ntl001 = no, with an aging phenomenon in 
these crystals, ne varying between 1-580 and 1"545, no between 1.575 and 1.538 (2 = 589 nm). Maximum 
birefringence 0.007. HEW lysozyme crystals are examples of good-quality protein crystals. Their 
refractive indices are surprisingly high for organic substances. 

Introduction 

L'obtention de cristaux de prot6ines de dimensions 
millim6triques rend possible, en principe, l'6tude de 
leurs propri6t6s optiques. Peu d'6tudes ont 6t6 con- 
sacr6es ~t ces probl~mes depuis celles que Perutz, Bragg 
& Pippard ont faites en 1953 sur des cristaux d'h6mo- 
globine. Ceci s'explique par le fait que le cristallo- 
graphe vise essentiellement ~t la connaissance de la 
structure mol6culaire de la prot6ine et non/~ celle des 
propri6t6s physiques du cristal, et d'autre part parce 
qu'une telle 6tude pr6sente de nombreuses difficult6s. 

La plupart des cristaux de prot6ine sont tr& sensibles ~t 
toute variation du milieu de cristallisation et ne sup- 
portent d'en &re s6par6s qu'un court laps de temps. 
Beaucoup d'autres sont instables dans le temps et pas- 
sent ~t l'6tat amorphe plus ou moins rapidement. 

Le cas qui 6t6 choisi dans cette 6tude, les cristaux 
de lysozyme de blanc d'oeuf de poule (EC 3.2.1.17), 
&ait int6ressant ~t plus d'un titre. D'une part la struc- 
ture cristalline de lysozyme a 6t6 d&ermin6e (Blake, 
Mair, North, Phillips & Sarma, 1967) h partir de cris- 
taux quadratiques, appel6s dans cette 6tude cristaux 
de type A. D'autre part, une deuxi6me forme cristal- 


